Cookies erleichtern die Bereitstellung unserer Dienste. Mit der Nutzung dieses Internetangebots erklären Sie sich damit einverstanden, dass wir Cookies verwenden.
Weitere Informationen
OK

Fünfeckszahlen - Rechner

Fünfeckszahlen leiten sich von der geometrischen Form des Fünfecks ab und stellen die Anzahl von Steinen dar, die benötigt wird, um verschieden große regelmäßige Fünfecke mit einer gemeinsamen Ecke zu legen.

Eingabedaten
Von Folgenglied Nr.:
Bis Folgenglied Nr.:
Datenschutzhinweis
Ergebnis
Nummer
Fünfeckszahl
1
1
2
5
3
12
4
22
5
35
6
51
7
70
8
92
9
117
10
145
11
176
12
210
13
247
14
287
15
330
16
376
17
425
18
477
19
532
20
590

Die Fünfeckszahlen, auch Pentagonalzahlen genannt, gehören zu den sogenannten figurierten Zahlen, da sie sich auf eine geometrische Figur bzw. Form beziehen – in diesem Fall ein regelmäßiges Fünfeck. Dies veranschaulicht die folgende Abbildung der ersten vier Fünfeckszahlen.

Die n-te Fünfeckszahl gibt somit die Anzahl der Steine an, die man braucht, um n regelmäßige Fünfecke mit der Kantenlänge n und einer gemeinsamen Ecke zu legen. Genau wie bei den Dreieckszahlen und Quadratzahlen handelt es sich also nicht nur um ein einzelnes Fünfeck, sondern um n aufeinander aufbauende und damit teilweise gefüllte Fünfecke. Dabei kann n eine beliebige natürliche Zahl größer/gleich Null sein.

Um ein solches Fünfecksmuster um das nächstgrößere Fünfeck zu erweitern, braucht es immer genau 3 Steine mehr als bei der vorherigen Erweiterung (siehe Abb.). Dadurch lassen sich Fünfeckszahlen als Summe ihrer einzelnen Erweiterungen berechnen: Die erste Fünfeckszahl ist die 1, die zweite 1+4 = 5, die dritte 1+4+7 = 12, die vierte 1+4+7+10 = 22, usw. Die einzelnen Summanden bilden dabei eine arithmetische Folge. Das ist eine regelmäßige Zahlenfolge, bei der aufeinander folgende Zahlen immer die gleiche Differenz haben; bei den Fünfeckszahlen ist die Differenz immer +3. Die Folge der Fünfeckszahlen selbst ist somit also eine arithmetische Folge zweiter Ordnung.

Fünfeckszahlen gehören außerdem zu den Polygonalzahlen, da das Fünfeck ein Polygon darstellt.

Permanentlink zu dieser Berechnung erstellen


Alle Angaben und Berechnungen ohne Gewähr. Copyright © 2019 Rechner.Club