Eine arithmetische Folge ist eine mathematische Zahlenfolge, bei der zwei benachbarte Folgenglieder stets die selbe Differenz aufweisen.
Eine arithmetische Folge ist eine mathematische Zahlenfolge, bei der zwei benachbarte Folgenglieder stets die selbe Differenz aufweisen.
Zur Bildung einer arithmetischen Folge geht man von einem gegebenen Start-Folgenglied aus, dem für jedes weitere Folgenglied ein konstanter Wert hinzu addiert wird. Die Differenz zweier benachbarte Folgenglieder ist somit stets konstant und stellt nach dem Start-Folgenglied die zweite erforderliche Eingabe zur Berechnung einer arithmetischen Folge dar.
Das Start-Folgenglied trägt die Nummer 0, während die weiteren Folgenglieder die Nummern 1, 2, 3 usw. tragen.
Der Rechner für arithmetische Folgen berechnet einen frei wählbaren Teilbereich der Folge, entsprechend der Angabe der Folgenglied-Nummern von-bis.
Die Folge der natürlichen Zahlen 1, 2, 3, usw. stellt bereits ein sehr einfaches Beispiel einer arithmetischen Folge dar, denn die Differenz zweier benachbarter Folgenglieder beträgt immer 1 und Start-Folgenglied ist ebenfalls 1. Ein weiteres Beispiel für eine arithmetische Folge ist 5, 8, 11, 14, ... Das Start-Folgenglied ist hier 5 und die konstante Differenz der Folgenglieder beträgt 3.
Mathematisch lässt sich das jeweilige Bildungsgesetz einer arithmetischen Folge sowohl explizit als auch rekursiv darstellen. Mittels der expliziten Darstellung lässt sich ein bestimmtes Folgenglied anhand des Start-Folgengliedes und der konstanten Differenz direkt berechnen; bei der rekursiven Definition geht man vom vorangehenden Folgenglied aus und addiert den konstanten Differenzwert.
Zahlenfolgen-Rechner (Übersicht)
Zentrierte Dreieckszahlen berechnen
Zentrierte Quadratzahlen berechnen
Zentrierte Fünfeckszahlen berechnen
Zentrierte Sechseckszahlen berechnen
Arithmetische Folge zweiter Ordnung berechnen
Alle Angaben und Berechnungen ohne Gewähr.